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Abstract. In this paper, we solve Problem 1 in [8] for left V-semirings. Specifi-

cally, we prove that has the inclusion of the radical Js(R) into the Jacobson radical

J(R) for every left V-semiring R. Moreover, we give a necessary and sufficient con-

dition for two radicals are equal on left artinian (or subtractive) left V-semirings.

1 Introduction

Hemirings, introduced by Vandiver [13] in 1934, generalize the notion of noncom-

mutative rings in the sense that negative elements do not have to exist. Since then

there have been an active area of research in hemirings, both on the theoretical side

and on the side of applications e.g. in theoretical computer science. The reader may

consult the monographs of Golan [4] for a more elaborate introduction to hemirings.

The Jacobson radical J(R) of a hemiring R was first introduced by S. Bourne in

an internal way (see, [2]). The Jacobson radical of a hemiring has subsequently been

studied by Iizuka from the point of view of representation theory (see, [6]). However,

if R is an additively idempotent hemiring then the Jacobson radical J(R) = R (see,

[12, Proposition 2.5] or [8, Example 3.7]). Thus, for additively idempotent hemirings,

Jacobson radical is not a good tool. Recently, Katsov and Nam have defined radical

Js(R) of a hemiring R (see, [8, p. 5076]). And they also confirmed that Js(R) ⊆
J(R) for any commutative or additively regular, in particular additively idempotent,

hemiringR [8, Proposition 4.8]. And raised a problem as follow: Describe the subclass

of all hemirings R of the class H (H be the set of all hemirings) with Js(R) ⊆ J(R),

particular, with Js(R) = J(R) [8, Problem 1]. In this paper we will solve Problem 1

in [8] for left V-semiring class. The paper is organized as follows.

In Section 2, for the reader’s convenience, we included all subsequently necessary

notions and facts on semirings and semimodules, as well as on the radical theory

of semirings. In Section 3, we prove a radical operator distributed for a direct sum

of semirings (Proposition 3.3), then inferred for the radical operators J and Js
(Corollary 3.4). Next, we resolve Problem 1 in [8], with the inclusion between the

above two radicals for left V-semirings (Theorem 3.5). We prove that, if R is a

left artinian (or subtractive) semiring then there exists simple left R-semimodule

(Corollary 3.7), from this corollary we confirmed Js(R)  J(R) = R for a left

artinian (or subtractive) zeroic semiring (Corollary 3.8). We conclude this section

with an answer when two radicals are equal for left artinian (or subtractive) left

V-semirings (Theorem 3.9).

Finally, all notions and facts of radical theory of semirings, use here without any

comments, can be found in [2, 6, 8, 11]; for notions and facts from semirings and

semimodules we refer to [4].
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2 Preliminaries

Recall from [4] that a hemiring R is an algebra (R,+, ·, 0) such that the following

conditions are satisfied:

(1) (R,+, 0) is a commutative monoid with identity element 0;

(2) (R, ·) is a semigroup;

(3) Multiplication distributes over addition on either side;

(4) 0r = 0 = r0 for all r ∈ R.

A hemiring R is called a semiring if its multiplicative semigroup (R, ·) is a monoid

with identity element 1. A hemiring R is called additively cancellative if a+c = b+c

implies a = b for all a, b, c ∈ R. The notions of an (two-sided) ideal, a left ideal and a

right ideal of a hemiring R are defined similarly as for rings. The subtractive closure

I = {r ∈ R | r + i ∈ I for some i ∈ I} of an ideal I is an ideal of R. An ideal I of a

hemiring R is called subtractive if I = I; that is, for all x, a ∈ R, if x+ a, a ∈ I then

x ∈ I. Denote by I(R) and SI(R) the sets of all ideals and all subtractive ideals of

R, respectively. A semiring is called right (left) subtractive if every right (left) ideal

is subtractive. The subset Z(R) = {r ∈ R | r + x = x for some x ∈ R} denote the

zeroic of a hemiring R. A hemiring R is zeroic if Z(R) = R.

As for rings, for any homomorphism f : R → S between hemirings R and S,

there exists a subtractive ideal, the kernel, Kerf = {r ∈ R | f(r) = 0} ⊆ R

of f . A surjective hemiring homomorphism f : R → S is a semiisomorphism if

Kerf = 0. As usual, the direct product R =
∏

i∈I Ri of a family (Ri)i∈I of hemirings

Ri consists of the elements r = (ri)i∈I for ri ∈ Ri and is determined by the surjective

homomorphisms πi : R → Ri defined by πi(r) = ri; and a subhemiring S of R is

called a subdirect product S =
∏sub

i∈I Ri of (Ri)i∈I if, for each πi, the restriction

πi|S : S → Ri is also surjective.

Any ideal I of a hemiring R induces on R a congruence relation ≡I , which is

referred to as Bourne relation [4, p.78] and is given by: r ≡I r
′ iff there exist elements

i1, i2 ∈ I such that r + i1 = r′ + i2. Denote the factor hemiring R/≡I by R/I. It

is easy to see that ≡I and ≡I on R coincide for every ideal I of R, and hence

R/I = R/I holds for every ideal I of R.

As usual, a left R-semimodule over a hemiring R is a commutative monoid

(M,+, 0M) together with a scalar multiplication (r,m) 7→ rm from R ×M to M

that satisfies the following identities for all r, r′ ∈ R and m,m′ ∈M :

(1) (rr′)m = r(r′m);

(2) r(m+m′) = rm+ rm′;

(3) (r + r′)m = rm+ r′m;

(4) r0M = 0M = 0m.

Right R-semimodules and homomorphisms between semimodules are defined in

the standard manner. If a hemiring R is a semiring, then all semimodules over R

are unitary ones. Denote by MR and RM the categories of all right and left R-

semimodules, respectively. A semimodule M is injective if each R-homomorphism

ϕ : A → M may be extended to an R-homomorphism ϕ : B → M for every

R-semimodule B and every subsemimodule A ⊆ B. A left semimodule M over a

hemiring R is cancellative if x + z = y + z implies x = y for all x, y, z ∈ M . A

subsemimodule N of an R-semimodule M is subtractive if, for all x, y ∈ M , from
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x+ y, x ∈ N it follows that y ∈ N , too.

The usual concepts of the Descending Chain Condition and artinian modules of

theory of modules over rings, as well as results involving them, are easily extended in

an obvious fashion (see, for example, [7]) to a context of semimodules over semirings.

For a left R-semimodule RM , the ideal (0 : M)R = {r ∈ R | rM = 0} of R is called

the annihilator of M .

Congruences on an R-semimodule M are defined in the standard manner, and

Cong(M) denotes the set of all congruences on M . This set is non-empty since it

always contains at least two trivial congruences, the diagonal congruence ∆M :=

{(m,m) | m ∈ M} and the universal congruence M2 := {(m,n) | m,n ∈ M}.
A semimodule M 6= 0 is congruence-simple provided that Cong(M) = {∆M ,M

2}.
Any subsemimodule N of an R-semimodule M induces a congruence ≡N on M ,

known as the Bourne congruence, by setting m ≡N m′ iff m+ n = m′ + n′ for some

n, n′ ∈ N ; and M/N denotes the factor R-semimodule M/ ≡N , having the canonical

R-surjection πN : M →M/N .

A nonzero cancellative left semimodule M over a hemiring R is irreducible if, for

an arbitrarily fixed pair of elements m1,m2 ∈ M with m1 6= m2 and any m ∈ M ,

there exist r1, r2 ∈ R such that m+ r1m1 + r2m2 = r1m2 + r2m1. By [6, Definition

6], the Jacobson radical

J(R) = ∩{(0 : M)R | M ∈ J },

for J be the set of all irreducible left semimodules over a hemiring R. When J = ∅,
by convention, J(R) = R.

A left R-semimodule M is congruence-simple if Cong(M) = {∆M ,M
2}. A left

R-semimodule M is simple if RM 6= 0 and there are only trivial subsemimodules

of, as well as congruences on, M . Call a radical

Js(R) = ∩{(0 : M)R | M ∈ J ′},

for J ′ be the set of all simple left semimodules over a hemiring R. When J ′ = ∅,
by convention, Js(R) = R (see, [8, p. 5076]).

Remark If M is a simple left semimodule over a semiring R then M is always

unitary, that is, 1.m = m for all m ∈ M . Indeed, r(1.m) = (r.1)m = rm for all

r ∈ R and consider the congruence ρ on M given by: xρy if and only if rx = ry

for all r ∈ R and x, y ∈ M . Since M is simple, ρ = ∆M or ρ = M2. If ρ = M2,

then (x, 0) ∈ ρ for all x ∈ M , that is, rx = 0 for all r ∈ R and x ∈ M , and hence,

RM = 0 (contraction). Thus, ρ = ∆M , that is, (1.m,m) ∈ ρ, i.e., 1.m = m.

In the Kurosh-Amitsur radical theory of the category H of all hemirings [11, p.

536], a nonempty subclass U of H is said to be hereditary if R ∈ U implies I(R) ⊆ U,

and homomorphically closed if R ∈ U implies ϕ(R) ∈ U for each homomorphism

ϕ of R. If U is both hereditary and homomorphically closed, then it is said to be

universal. As in the radical theory of rings, there are three equivalent approaches

to the Kurosh-Amitsur radical theory of hemirings, by means of radical classes, of

radical operators, and of semisimple classes. These approaches are independently

defined in a fixed universal class U ⊆ H of hemirings. Define T = {S ∈ H | |S| = 1}
as the class of all trivial hemirings.
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A nonempty subclass R of a fixed universal class U ⊆ H is called a radical class

of U if R satisfies the following two conditions [11, Defination 3.1]:

(1) R is homomorphically closed;

(2) For every hemiring R ∈ U \R, there is a subtractive ideal K ∈ SI(R) \ {R}
such that I(R/K) ∩ R = 0.

A mapping ρ : U → U is called a radical operator in U if it assigns to each

hemiring R ∈ U a subtractive ideal ρ(R) ∈ SI(R) ⊆ U such that the following

conditions are satisfied for all S, T ∈ U [11, Defination 4.1]:

(1) ϕ(ρ(S)) ⊆ ρ(ϕ(S)) for each homomorphism ϕ : S → T ;

(2) ρ(S/ρ(S)) = 0;

(3) if ρ(T ) = T is an ideal of S then T ⊆ ρ(S);

(4) ρ(ρ(S)) = ρ(S).

3 Main results

A concept of left V-ring was defined by O. Villamajor in the rings and modules

(see, for example, [9]). Generalizing the well known for rings notions and follow-

ing [5], we call a semiring R a left V -semiring if every congruence-simple left R-

semimodule is injective; and an R-semimodule M is called an essential extension

of an R-subsemimodule L, i : L � M , if for every semimoddule homomorhpism

γ : M → N , the homomorphisms γi and γ are simultaneously injective.

Example 3.1. (i) A zeroic proper division semiring or a division ring is a left

V-semiring according to [1, Corollary 3.5].

(ii) [1, Example 3.7] Let n be a nonzero natural number and Bn+1 the join-

semilattice defined on the chain 0 < 1 < ... < n. Equip Bn+1 with a structure of a

semiring with addition x + y := x ∨ y and multiplication xy := 0 if x = 0 or y = 0

and xy := x ∨ y otherwise. Then Bn+1 is a left V-semiring. Of course, B2 coincides

with Boolean semiring B.

(iii) Finite Boolean algebra D = B × B × ... × B is a left V-semiring according

to [1, Corollary 3.2].

Now, we recall the main result of [5], which is used in main section of this paper.

Theorem 3.2 (5, Theorem 2.10). For a semiring R the following are equivalent:

(1) R is a left V -semiring;

(2) Every essential extension of each congruence-simple left R-semimodule M

coincides with M ;

(3) R = S ⊕ T , where S is a left V -ring and T is a zeroic left V -semiring;

(4) Each quotient semiring of R is a left V -semiring.

First, we prove a result concerning a radical operator. Specifically, the radical

operator distributes for the direct sum of the hemirings.

Proposition 3.3. Let R be a radical class in a universal class U and ρ be a radical

operator corresponding. Then ρ(A⊕B) = ρ(A)⊕ ρ(B) for every A,B ∈ U.
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By [2, Theorems 5 and 6], the mapping % : H→ H given by R 7→ J(R) is, in fact,

a radical operator inH. The same has been proved in [8] that the mapping % : H→ H
given by R 7→ Js(R) is also a radical operator in H. From these observations and

using Proposition 3.3, we have the following.

Corollary 3.4. Let R be a hemiring and R1, R2 its subhemirings. If R = R1 ⊕ R2

then J(R) = J(R1)⊕ J(R2); and Js(R) = Js(R1)⊕ Js(R2).

Next, we solve Problem 1 in [8], the answered inclusion between the two radicals,

over left V-semirings.

Theorem 3.5. If R is a left V -semiring, then Js(R) ⊆ J(R).

Following, we prove that always build a simple left R-semimodule from a minimal

left R-semimodule.

Lemma 3.6. Let M be a minimal left R-semimodule. Then there exists a maximal

congruence ρ on M such that M := M/ρ is a simple left R-semimodule.

According to [7, Proposition 2.1],M is left artinian (subtractive) leftR-semimodule

if and only if every non-empty set of subsemimodules of M has a minimal element.

From this result and Lemma 3.6, we have the following.

Corollary 3.7. If R is a left artinian (or subtractive) semiring then there exists a

simple left R-semimodule.

Corollary 3.8. For a left artinian (or subtractive) zeroic semiring R, Js(R)  
J(R) = R.

Now, we solve Problem 1 in [8], answered when two radicals are equal, over left

artinian (or subtractive) left V-semirings.

Theorem 3.9. For a left artinian (or subtractive) left V -semiring R, Js(R) = J(R)

if and only if R is a left V -ring.
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