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Abstract. In this paper, we study some properties of directionally proximal subdif-
ferential and then we provide a necessary condition for directionally optimal solutions
of the nonconstraint optimization problem.

1 Introduction

For f : Rn → R is a function define at x̄ ∈ Rn and Rn 3 u 6= 0, then f is said to
be differential in direction u at x̄ if the following limit is finite

lim
t→0

f(x̄+ tu)− f(x̄)

t‖u‖
.

The above limit is called that the derivative in direction u at x̄ of f and denoted by
f ′u(x̄).

For each i = 1, . . . , n consider ui := (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0) then the derivative of

f at x̄ in direction u is called that the partial derivative of f with respect to the ith

variable.
The partial derivative is an important tool in the optimal theory. However,

the class of the functions which exist the partial derivative is very exiguous. For
example, the function f(x, y) =

√
|x|+ |y| does not exist the partial derivative at

x̄ = (0, 0) but it is easy to show that x̄ = (0, 0) is the minimizer of f.
In 1960, Rokafellar [5] presented the subdifferential for the convex functions

which is the generalization of the derivative. And then the subdifferential for the
convex function was studied and obtained the important results.

Recently, Clark, Fréchet and Mordukhovich generalized the subdifferential for
the convex functions become the Clark subdifferential, Fréchet subdifferential and
limiting subdifferential for the nonconvex functions and stated many important re-
sults of the optimal theory due to these tools.

In 2012, Ginchev and Mordukhovich [2] presented the directionally subdiffer-
ential for the nonconvex functions and used this tool to establish the necessary
condition for minimizer of the optimization problems. The directionally subdiffer-
ential is a (directionally) generalization of the partial derivative for the nonconvex
and nondifferential functions.

In this paper, we present the notations on the directionally proximal normal cone
and the directionally limiting normal cone. From these directionally normal cones,
we establish the directionally proximal subdifferential and the directionally limiting
subdifferential. Then we give some properties of these directionally subdifferentials

2 Preliminaries and auxiliary results

In this section, we always assume that X is a Hilbert space. For a sequence of
subsets (Ak) of X, we present the upper Painlewé-Kuratowski limits and the lower
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Painlewé-Kuratowski limits as follows

Lim sup
k→+∞

Ak =
{
x ∈ X | ∃km → +∞,∃xkm

m→+∞−−−−→ x
}

and
Lim inf
k→+∞

Ak =
{
x ∈ X | ∃xk ∈ Ak for large k, with xk

k→+∞−−−−→ x
}
.

The Painlewé-Kuratowski limit of the sequence (Ak), when the upper and lower
limits coincide, is denoted by Limk→+∞Ak.

In what follows, we will define the concepts on directionally normal cone and
directionally subdifferential of a subset A of X. For x̄ ∈ A,Q ⊂ X \ {0} and
δ > 0, one denotes by DQ(x̄; δ) := B(x̄; δ) ∩ (x̄ + CQδ) with Qδ := Q + δB,CQ :=
{λq | q ∈ Q, λ ≥ 0} and B is an unit ball. If Q = {u} then we replace C{u}(x̄; δ) by
Cu(x̄; δ). Now we define the proximal and limiting normal cones with respect to Q
as follows

NP
Q (x̄;A) :=

{
x∗ ∈ X∗ | 〈x∗, x− x̄〉 ≤ p‖x− x̄‖2,∀x ∈ A ∩DQ(x̄; δ) and some p > 0

}
(2.1)

and
NQ(x̄;A) := Lim sup

x
A,Q−−→x̄

NP
Qδ

(x;A). (2.2)

If x̄ /∈ A then we put NP
Q (x̄;A) := NQ(x̄;A) := ∅. If Q = {u} then we call NP

u (x̄;A)
and Nu(x̄;A) respectively are the proximal and limiting normal cones in direction
u.

Let f : X → R ∪ {+∞} we denote the followings

dom f := {x ∈ X | f(x) < +∞} and epi f := {(x, r) | r ≥ f(x), x ∈ X} .

Next, we define the proximal and limiting subdifferential of f at x̄ with respect to Q
as follows

∂PQf(x̄) :=
{
x∗ ∈ X∗ | (x∗,−1) ∈ NP

Q ((x̄, f(x̄)), epi f)
}
, (2.3)

∂Qf(x̄) := {x∗ ∈ X∗ | (x∗,−1) ∈ NQ((x̄, f(x̄)), epi f)} . (2.4)

IfQ = {u} then we also denote by ∂Pu f(x̄) (resp. ∂uf(x̄)), the proximal subdifferential
(resp. the limiting subdifferential) of f at x̄ in direction u.

A point x̄ ∈ dom f is called to be an optimal minimizer of f in direction u if
there exists δ > 0 such that x̄ ∈ Du(x̄; δ) and f(x̄) ≤ f(x) for all x ∈ Du(x̄; δ).

3 Main results

We begin this section with the proposition on the convexity of directionally
proximal normal cone and then we give the sum rules for directionally proximal
subdifferential.

Proposition 3.1. Let A be a subset of a Hilbert space X, x̄ ∈ A and u ∈ X \ {0} .
Then NP

u (x̄;A) is a convex normal cone.
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Proof. Let x∗, y∗ ∈ NP
u (x̄;A) and z∗ := λx∗+ (1− λ)y∗ for some λ ∈ [0; 1] then

one has

〈x∗, x− x̄〉 ≤ ε1‖x− x̄‖2 and 〈y∗, x− x̄〉 ≤ ε2‖x− x̄‖2 for every x ∈ A ∩ (x̄+ Cu).

So one gets

〈z∗, x− x̄〉 = λ〈x∗, x− x̄〉+ (1− λ)〈y∗, x− x̄〉 ≤ (λε1 + (1− λ)ε2)‖x− x̄‖2

for every x ∈ A ∩ (x̄+ Cu). Setting ε := max {ε1; ε2} then one obtains

〈z∗, x− x̄〉 ≤ ε‖x− x̄‖2 for every x ∈ A ∩ (x̄+ Cu)

which implies that NP
u (x̄;A) is convex. �

Proposition 3.2. Let f : X → R is a lower semicontinuous function and u ⊂
X \ {0} then one has
(i) ∂Pu (cf)(x̄) = c∂Pu f(x̄) for all x̄ ∈ X and c > 0.
(ii) ∂u(cf)(x̄) = c∂uf(x̄) for all x̄ ∈ X and c > 0.

Proof. Let us first prove (i). Taking x∗ ∈ ∂Pu (cf)(x̄) then one finds ε > 0, δ > 0
such that

〈x∗, x− x̄〉− (cf(x)− cf(x̄)) ≤ ε‖x− x̄‖2 for all x ∈ Du(x̄, δ) := B(x̄; δ)∩ (x̄+Cu).

It is equivalent to〈
1

c
x∗, x− x̄

〉
− (f(x)− f(x̄)) ≤ ε

c
‖x− x̄‖2 for all x ∈ Du(x̄, δ).

This implies that x∗

c
∈ ∂Pu f(x̄) and thus x∗ ∈ c∂Pu f(x̄).

Next we prove (ii). Taking x∗ ∈ ∂u(cf)(x̄) then one finds sequences εn > 0, rn →
0, δn → 0, xn → x̄ and x∗n

w∗
−→ x∗ such that

〈x∗n, x− xn〉 − (cf(x)− cf(xn)) ≤ εn‖x− xn‖2

for all x ∈ Du(xn, rn, δn) := B(xn; rn) ∩ (xn + Cuδn ). It means that〈
x∗n
c
, x− xn

〉
− (f(x)− f(xn)) ≤ εn

c
‖x− xn‖2 for all x ∈ Du(xn, rn, δn).

This implies that x∗

c
∈ ∂uf(x̄) thus x∗ ∈ c∂uf(x̄) which complete the proof of

theorem. �

Proposition 3.3. Let f : X → R be a lower semicontinuous function and x̄ be a
local solution in direction u ∈ X \ {0} of f then 0 ∈ ∂Pu f(x̄).

Proof. Let x̄ is a local solution in direction u ∈ X \ {0} of f then there is δ > 0
such that

f(x)− f(x̄) ≤ 0 for all x ∈ B(x̄, δ) ∩ (x̄+ Cuδ).

It implies that

〈0, x− x̄〉 − (f(x)− f(x̄)) ≤ 0 ≤ ε‖x− x̄‖2 for every ε > 0.

Thus 0 ∈ ∂Pu f(x̄). �
Finally, we complete this section with the fuzzy sum rule of the direction-

ally proximal subdifferential. To obtain this, we let S be a subset of X and
diam(S) := sup {‖x− y‖, x, y ∈ S} . Let now us define the notation on the uniform
lower semicontinuous in direction u ∈ X of functions which is the generalization of
the uniform lower semicontinuous in [3].
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Definition 3.4. Let X be a Hilbert space and fj, j ∈ J be functions defined and
lower semicontinuous in a neighborhood of x̄and finite at x̄ with J is the index finite
set. We say that fj, j ∈ J are uniform lower semicontinuous in direction u ∈ X \{0}
at x̄ if there is δ > 0 such that for any sequences (xj,n) ∈ Du(x̄, δ) with j ∈ J and
such that limn→+∞ diam {xj,n, j ∈ J} → 0 then there are un ∈ Du(x̄, δ) such that
for all j ∈ J, limn→+∞ ‖xj,n − un‖ → 0 and

lim inf
n→+∞

∑
j∈J

(fj(xj,n − fj(un))) ≥ 0.

Proposition 3.5. Let X be a Hilbert space and fi, i ∈ J be (extended-real-valued) the
uniform lower semicontinuous in direction u ∈ X \{0} at x̄. Let 0 ∈ ∂Pu (

∑
i∈J fi)(x̄)

then for any ε > 0 there are ui, u
∗
i , i ∈ J such that

|fi(ui)− fi(x̄)| ≤ ε; ‖ui − x̄‖ < ε; u∗i ∈ ∂Pu fi(ūi); ‖
∑
i∈J

u∗i ‖ < ε.

Proof. It is without loss of generality that one can assume fi(x̄) = 0 for all
i ∈ J. (If opposite then we replace fi(x) by fi(x) − fi(x̄) for all i ∈ J.) Since
0 ∈ ∂Pu (

∑
i∈J fi)(x̄) by the definition, one finds p > 0, δ̄ > 0 such that∑

i∈J

fi(x) ≥ −p‖x− x̄‖2 with x ∈ Du(x̄, δ̄). (3.5)

Since fi, i ∈ J are uniform lower semicontinuous in direction u and fi(x̄) = 0 for
all i ∈ J , one finds a δ̂ > 0 which satisfying Definition 3.4 and fi(x) ≥ −1 for all

x ∈ Du(x̄; δ̂) and i ∈ J. Putting δ := min
{
δ̄, δ̂
}

and for each n ∈ N, xi ∈ Du(x̄; δ)

with i ∈ J , one considers

fn(xi, i ∈ J) :=
∑
i∈J

fi(xi) + p
∑
i∈J

‖xi − x̄‖2 + n
∑
i,j∈J

‖xi − xj‖2.

Putting αn := inf {fn(xi, i ∈ J) : xi ∈ Du(x̄, δ)}, one has

0 = fn(x̄, . . . , x̄) ≥ αn ≥ −|J | with |J | is the card of J.

For each i ∈ J , taking xin ∈ Du(x̄, δ) to satisfy

fn(xin, i ∈ J) ≤ αn +
1

n
.

Then one has

−|J |+ n
∑
i,j∈J

‖xin − xjn‖2 ≤ fn(xin, i ∈ J) ≤ 1

n
,

so that ‖xin − xjn‖ ≤
√∑

i,j∈J ‖xin − xjn‖2 ≤
√
|J |
n

+ 1
n2 which converse 0 as n go

to +∞.
By the directionally uniform lower semicontinuity of fi, i ∈ J there are un ∈

Du(x̄, δ) such that ‖xjn − un‖ → 0 and∑
j∈J

fj(xjr) ≥
∑
j∈J

fj(ur) + o(1).
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It follows that

0 ≤
∑
j∈J

fj(un) + |J |p‖un − x̄‖2 ≤
∑
j∈J

fj(xjn) + p
∑
j∈J

‖xjn − x̄‖2 + o(1)

≤ fn(xin, i ∈ J) + o(1) ≤ 1

n
+ o(1), (3.6)

and 0 ≤
∣∣∣‖xjn − x̄‖ − ‖un − x̄‖∣∣∣ ≤ ‖xjn − un‖ → 0. Hence

∑
j∈J fj(un) + |J |p‖un −

x̄‖2 → 0 as n→ +∞ and un → x̄ as well as all xjn. It implies from (3.6) that

0 ≤
∑
j∈J

lim inf
n→+∞

fj(xjn) ≤
∑
j∈J

lim sup
n→+∞

fj(xjn) ≤ 0. (3.7)

One has limn→+∞ fj(xjn) ≥ lim infx→x̄ fj(x) ≥ fj(x̄) = 0. Combining to (3.7) one
has fj(xjn)→ 0 for any j ∈ J.

For any small ε > 0, it implies from fi(xin) → 0 that there exists n0 ∈ N such
that |fi(xin)| < ε

2
for all n ≥ n0 and i ∈ J. Put δ := ε

2|J | , one finds a large number

r ∈ N such that xir ∈ clDu(x̄; δ) ⊂ Du(x̄; ε
2
) and

fr(xir, i ∈ J) ≤ inf
Du(z̄,δ)

fr + δ. (3.8)

With z = (xi, i ∈ J) ∈ X one puts Du(z; δ) :=
∏

i∈J Du(xi; δ), z̄ := (x̄, . . . , x̄), z0 :=
(xir, i ∈ J) := (zi0, i ∈ J) ∈ X |J | and

T (z0) :=

{
z = (zi, i ∈ J) ∈ clDu(z̄, δ) | fr(z) +

1

2

∑
i∈J

‖zi − zi0‖2 ≤ fr(z
0)

}
.

Then z0 ∈ T (z0) and T (z0) is a nonempty closed set. Indeed, let us consider sequence
zn := (zin, i ∈ J) ⊂ T (z0) with limn→+∞ z

n := z := (zi, i ∈ J) then z ∈ clD(z̄; δ)
and one has

fr(z
n) +

1

2

∑
i∈J

‖zin − zi0‖2 ≤ fr(z
0) for all n = 0, 1, . . . .

Since fr and the norm function are lower semicontinuous, one has

fr(z) +
1

2

∑
i∈J

‖zi − zi0‖2 ≤ lim inf
n→+∞

(
fr(z

n) +
1

2

∑
i∈J

‖zin − zi0‖2

)
≤ fr(z

0)

which implies that z ∈ T (z0).
For each y = (yi, i ∈ J) ∈ T (z0) one has∑

i∈J

‖yi − zi0‖2 ≤ fr(z
0)− fr(y) ≤ fr(z

0)− inf
Du(z̄,δ)

fr ≤ δ.

Taking z1 = (zi1, i ∈ J) ∈ T (z0) such that

fr(z
1) +

∑
i∈J

‖zi1 − zi0‖2 ≤ inf
z∈T (z0)

{
fr(z) +

∑
i∈J

‖zi − zi0‖2

}
+
δ

2
.

One again sets

T (z1) :=

{
z ∈ T (z0) | fr(z) +

1∑
i=0

∑
j∈J

1

2i+1
‖zj − zji‖2 ≤ fr(z

1) +
1

2

∑
i∈J

‖zi1 − zi0‖2

}
.
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Then z1 ∈ T (z1) and T (z1) is a nonempty closed set.
In general, one defines

T (zn) :=
{
z ∈ T (zn−1) | fr(z) +

n∑
i=0

∑
j∈J

1

2i+1
‖zj − zji‖2

≤ fr(z
n) +

n−1∑
i=0

∑
j∈J

1

2i+1
‖zji − zj0‖2

}
with zn = (zjn, j ∈ J) ∈ T (zn−1) such that

fr(z
n) +

n−1∑
i=0

∑
j∈J

1

2i+1
‖zji − zj0‖2 ≤ inf

T (zn−1)

{
fr(z) +

n−1∑
i=0

∑
j∈J

1

2i+1
‖zj − zji‖2

}
+

δ

n2n
.

Then T (zn) is also nonempty closed set.
For each y := (yi,∈ J) ∈ T (zn) one has

1

2n+1

∑
i∈J

‖yi − zin‖2 ≤

[
fr(z

n) +
n−1∑
i=0

∑
j∈J

1

2i+1
‖zj0 − zji‖2

]

−

[
fr(y) +

n−1∑
i=0

∑
j∈J

1

2i+1
‖zj − zji‖2

]
≤ inf

T (zn−1)

{
fr(z) +

n−1∑
i=0

∑
j∈J

1

2i+1
‖zj − zji‖2

}

+
δ

n2n
−

[
fr(y) +

n−1∑
i=1

∑
j∈J

1

2i+1
‖yj − zji‖2

]
≤ δ

n2n

and then one has ∑
i∈J

‖yi − zin‖2 ≤ 2δ

n
(3.9)

which implies by Cauchy-Swchart inequality that
∑

i∈J ‖yi − zin‖ ≤
√
ε

n
. Thus

diameter of T (zn)→ 0 as n→ +∞ and hence (zn) is a Cauchy sequence. It implies
that there is ẑ ∈ T (zn) for n = 1, 2, . . . such that zn → ẑ ∈ clDu(z̄; δ). Finally for
any clDu(z̄, δ) 3 z 6= ẑ one has z /∈

⋂+∞
i=0 T (zn) and so there is an m ∈ N such that

fr(z) +
m∑
i=0

∑
j∈J

1

2i+1
‖zj − zji‖2 > fr(z

m) +
m−1∑
i=0

∑
j∈J

1

2i+1
‖zjm − zji‖2. (3.10)

Otherwise for any q ≥ m one has

fr(z
m) +

m−1∑
i=0

∑
j∈J

1

2i+1
‖zjm − zji‖2 ≥ fr(z

q) +

q−1∑
i=0

∑
j∈J

1

2i+1
‖zjq − zji‖2

≥ fr(ẑ) +

q∑
i=0

∑
j∈J

1

2i+1
‖ẑj − zji‖2. (3.11)

For each j ∈ J one puts zj = ẑj + hj with hj = λju and puts λν = 0 if ν 6= j then
one has

fj(ẑj + hj)− fj(ẑj) +

q∑
i=m+1

1

2i+1
‖ẑj + hj − zji‖2 −

q∑
i=0

1

2i+1
‖ẑj − zji‖2 ≥ 0.
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Thus one has

fj(ẑj + hj)− fj(ẑj) + ‖hj‖2 + 2
n∑
i=0

1

2i+1
〈hj, ẑj − zji〉 ≥ 0. (3.12)

for all enough large n. Putting u∗jn := 2
∑n

i=0

1

2i+1
(ẑj − zji) then we have

fj(ẑj + hj)− fj(ẑj) + ‖hj‖2 + 〈u∗jn, hj〉 ≥ 0. (3.13)

Since sequence
(
u∗jn
)

is convergent so there is u∗j such that u∗j := limn→+∞ u
∗
jn. Then

for any ẑj 6= x ∈ clDu(x̄, δ) we have

fj(x)− fj(ẑj) + ‖x− ẑj‖2 + 〈u∗j , x− ẑj〉 ≥ 0

which implies that u∗j ∈ ∂ufj(ẑj).
One now shows that

∑
j∈J ‖u∗j‖ < ε. Indeed, one has∑

j∈J

‖u∗jn‖ =
∑
j∈j

‖2
n∑
i=0

1

2i+1
(ẑj − zji)‖

and noting that zn, ẑ ∈ clDu(z̄, δ) which implies that ‖zjn − ẑj‖ < 2δ = ε
|J | for all

j ∈ J and n = 0, 1, . . . . Thus one has
∑

j∈J ‖u∗j‖ < ε.
It remains to show that |fj(ẑj)| ≤ ε for all j ∈ J. Indeed, for each j ∈ J and

with large enough m it implies from (3.10) and (3.11) that

fr(z) +
m∑
i=0

∑
j∈J

1

2i+1
‖zj − zji‖2 ≥ fr(ẑ) +

q∑
i=0

∑
j∈J

1

2i+1
‖ẑj − zji‖2

for any z ∈ clDu(z̄; δ) and q ≥ m. Choosing z = z0 in the above inequality and
combining (3.9) one obtains

inf
clDu(z̄;δ)

fr + 2δ ≥ fr(z
0) + δ ≥ fr(z

0) +
m∑
i=0

∑
j∈J

1

2i+1
‖zj0 − zji‖2 ≥ fr(ẑ).

ε

|J |
≥
∑
i∈J

fi(ẑi) + p
∑
i∈J

‖ẑi − x̄‖2 + r
∑
i,j∈J

‖ẑi − ẑj‖2 (3.14)

for any large enough r ∈ N. It implies from (3.8) and (3.14) that

−ε ≤ −(|J |+ 1)ε

2|J |
≤ fj(ẑj) ≤

(|J |+ 1)ε

2|J |
≤ ε.

�
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